Para calcular de medida de área de figuras planas que podem
ser decompostas por quadrados, retângulos e/ou triângulos, utilizando a
equivalência entre áreas. A área de figuras planas representa a medida da
extensão que a figura ocupa no plano. Como figuras planas podemos citar o triângulo, o retângulo, o losango, o trapézio, entre
outras.
Para isso, podemos dividir a figura em duas outras
conhecidas (triângulo e retângulo):
Como a fórmula para calcular as áreas do triângulo e
retângulo são conhecidas, calculamos a área total:
Ou ainda em dois trapézios:
Como a fórmula para calcular as áreas dos trapézios são
conhecidas, calculamos a área total:
Exercícios
1 – Qual é a área da figura abaixo?
Resolução:
• Figura 1: Retângulo
• Figura 3: Triângulo
• Área total:
a) 13 m2
b) 14 m2
c) 16 m2
• Figura 1: Retângulo
• Figura 2: Quadrado
• Área total:
Resolução:
• Dividindo a figura em dois triângulos:
a² = b² + c²
x² = 72² + 30²
x² = 72 ⋅ 72 + 30 ⋅ 30
x² = 5184 + 900
x² = 6084
x = 78
• Calculo da área 1:
Onde p é o semiperímetro do triângulo 2:
• Fatorando os números 126, 48 e 42:
• Área total:
• Usando o teorema de Pitágoras no triângulo retângulo, para calcular a medida da base menor do trapézio:
a² = b² + c²
10² = 8² + (9 – x)²
10 ⋅ 10 = 8 ⋅ 8+
(9
– x) ⋅ (9 – x)
100 = 64 + 9² – 9 ⋅x – 9 ⋅x + x²
0 = 64 – 100 + 9 ⋅ 9 – 18x + x²
0 = – 36 + 81 – 18x + x²
0 = 45 – 18x + x²
ou
x² – 18x + 45 = 0
• Usando a fórmula de Bhaskara:
• Calculo da área do Retângulo:
• Calculo da área do triângulo:
• Área total:
Nenhum comentário:
Postar um comentário